光电薄膜先进制造
设备简介: 具有高效率高质量的镀膜优势; 靶材利用率高,解决了普通磁控溅射靶材出现刻蚀圈的现象; 在高浓度氧气条件下具有有效防止靶中毒现象的优点。 |
![]() |
2017-2020年光电薄膜先进制造论文发表
2020年
1.Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature energy, 2020, doi: 10.1038/s41560-020-00721-5.
2.Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy 2020, 78, 105249.
3.Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cells. Adv. Mater. Interfaces 2020, 2001121.
4.Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization. Journal of Energy Chemistry, 2020, 45(06), 111-117.
5.Controlling films structure by regulating 2D Ruddlesderoomn-Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. J. Mater. Chem. A, 2020, 8, 5874-5881.
2019年
1.Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 2019, 65, 104050.
2.Numerical investigation of copper oxide-based heterojunction solar cells. Journal of Physics D: Applied Physics. 2019, 52.
3.Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy 2019, 59, 721–729.
4.High-efficiency perovskite solar cells based on self-assembly n-doped fullerene derivative with excellent thermal stability. Journal of Power Sources 2019, 413, 459–466.
5.PbS QDs as Electron Blocking Layer Toward Efficient and Stable Perovskite Solar Cells. IEEE Journal of Photovoltaics 2019, 9(1), 194-199.
2018年
1.Phase Pure 2D Perovskite for High-Performance 2D–3D Heterostructured Perovskite Solar Cells. Adv. Mater. 2018, 1805323.
2.Enhanced Photoelectrochemical Performances in Flexible Mesoscopic Solar Cells: An Effective Light Scattering Material. ChemPhotoChem 2018, 2, 986.
3.Stable High-Performance Perovskite Solar Cells Based on Inorganic Electron Transporting Bi-layers. Nanotechnology. 2018, 29, 117673.
4.Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 2018, 46.
5.Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Applied Surface Science, 2018, 430, 415-423.
6.One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Sol. RRL 2018, 1700217